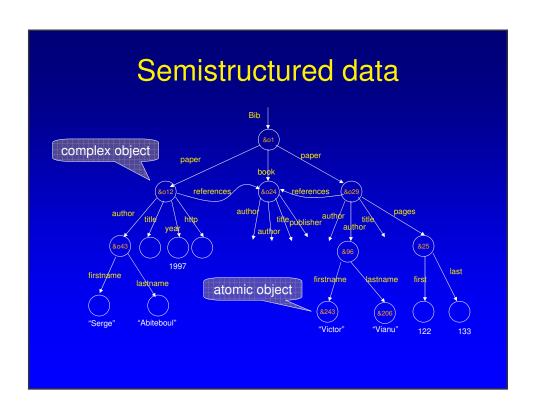
Foundations of XML Data Manipulation

Giorgio Ghelli


Course structure

- Data Model
- Query languages
- XPath
- Type systems, logics, tree automata
- Storing and querying

			Si	tru	ctur	ed	da	ıta				
ID	Last Name		First Name Title		Birth Date		Hire Date		City		Region	
1	Davolio		Nancy	Ms.	08-dic	-1968	01-mag-1992				WA	
2	Fuller		Andrew	Dr.	19-feb-1952		14-ago-1992		Tacoma		WA	
3	Leverling		Janet	Ms.	30-ago-1963			01-apr-1992			WA	
4	Peacock		Margaret	Mrs.	19-set-1958				Redmond		WA	
	Buchanan		Steven	Mr.	04-mar-1955			17-ott-1993				
	Suyama		Michael	Mr.	02-lug-1963		17-ott-1993					
7	King		Robert	Mr.	29-mag-1960		02-	02-gen-1994		on		
Ord	ler ID		Customer		Emp ID	Order	Date	Required	Date	Shipr	ed Date	
		Wilman Kala			1	04-lug-1996					lug-1996	
			ção Hiperm.		6						-lug-1996	
10250 Hana					3					12-lug-1996		
10251 Victuaille				ck	3						15-lug-1996	
10252 Suprêmes délices				2					-lug-1996			
10253 Hanari Carnes					3		g-1996					
	10254 Chop-suey Chinese			se	2							

Unstructured data

- Sample databases included with Access
 - Microsoft Access provides sample databases that you can use while you're learning Access.
 - Northwind Traders sample database
 - The Northwind database and Access project (available from the Sample Databases command on the Help menu) contains the sales data for a fictitious company called Northwind Traders, which imports and exports specialty foods from around the world. By viewing the database objects included in the Northwind database. ...

Why SSD

- The origin:
 - Data integration
 - Documents
 - Scientific databases
- The interest:
 - Cannot be ignored
 - WWW and bioinformatics

The Data Model

- The information behind the syntax, i.e.: when two pieces of data really differ
- Some alternatives:
 - OEM: SSD as graphs modulo bisimulation
 - XML: ordered trees with node identity (and with pointers)
 - TQL: unordered trees

OEM with bisimulation

- Edge-labelled version
- Bisimulation: generalizes the notion of set equality to labelled graphs:

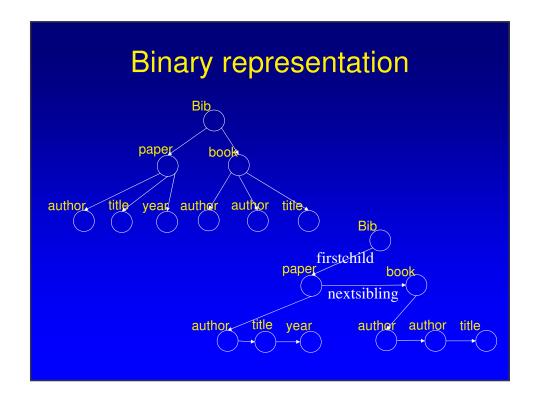
```
- \{a: v, b: w\} = \{b: w, a: v\}
- \{a: v, a: v, b: w\} = \{a: v, b: w, b: w\}
```

- Exists R ⊆ G×G' such that:
 - n R m and n,l,n' in G ⇒ exists m,l,m' in G' with n' R m' and conversely
 - n R m and n leaf in G ⇔ m leaf in G'

TQL data model

• Edge-labeled trees defined as multisets of label-tree pairs:

```
-f ::= \emptyset \mid a[f] \mid f \mid f
-f ::= \{\} \mid \{a:f\} \mid f \cup f
```


• Hence:

```
- \{a: v, b: w\} = \{b: w, a: v\}- \{a: v, a: v, b: w\} \neq \{a: v, b: w, b: w\}
```

 The same syntax can be interpreted as nodelabeled forests

Ordered children (as in XDM)

- Node-labeled ordered trees of elements
 - item ::= <label> value </label> | leaf
 - value ::= item *
- Hence:
 - $-\{a: v, b: w\} \neq \{b: w, a: v\}$
 - $-\{a: v, a: v, b: w\} \neq \{a: v, b: w, b: w\}$

XML

XML

- Simplification of SGML
- Designed to substitute HTML
- The standard for data exchange and webservices invocation
- Some W3C related standards:
 - XPath/XQuery
 - XML Infoset and XDM
 - XSLT
 - DTD, XSD
 - Many other things

XML for data exchange

```
<trader ID="T12">
<name>Wilman Kala</name>
       <address><country>....</ country>...</ address>
              <item>...</item> <item>...</item>
              </order>
              <order OID="0122">...</order>
       </orders>
</trader>
<trader ID="T13">
       <name>Hanari Cames</name>
       <address><city>...</city>...</address>
       <orders>
              <item>...</item>
             </order>
       </orders>
</trader>
```

XML as it was designed

```
<doc><title>Sample databases included with Access<title>
<subtitle>Microsoft Access provides sample
databases.</subtitle>
<subtitle> link ref= "./NT.mdb">Northwind Traders
database </link> </subtitle>
<body>
<para author= "JDM" font="times">The Northwind
database contains the sales data for a company called
<emph>Northwind Traders</emph>, which imports and
exports specialty foods from around the world. By viewing
the <link ref= "./NT.mdb">database objects<link>included
in the Northwind database.</para>
...</body></doc>
```

XDM

- A value is a sequence of nodes
- Parent axis: a node is a pair <tree, path in the tree>
 - $\{a:\{b: w\}\}/b \neq \{b: w\}$
- Node identity: a store is a foreststructured graph <N,E>, and a node is an element of N
 - $-\{a: v\} \neq \{a: v\}$

Moreover

- Six other types of nodes
- Unordered attributes
- ID IDREFs to encode pointers
- Namespaces
- Type annotations

Conclusions

- · We now know what SSD is
- Questions:
 - How do we describe its structure?
 - How do we manipulate it?
 - How do we store it?

Suggested readings

- · Some papers are in the "query folder"
- klarlundSchweintick: general introduction to XML, DTD, XSD, XPath, XQuery, XSLT.
- AbiQuaMcH97: OEM and Lorel
- BunDavHil96: UnQL data model
- ColGheAl06: MicroXQuery data model
- Hidders: XML data model
- CarGhe03: TQL data model
- www.w3.org/TR/xpath-datamodel: XQuery/XPath data model (XDM)